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Decay of unstable equilibrium and nonequilibrium states
with inverse probability current taken into account

N. V. Agudov* and A. N. Malakhov
Radiophysical Department, State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603600, Russia

~Received 30 March 1999!

We study the causes of noise delayed decay of unstable states in nonlinear dynamic systems within the
framework of the overdamped Brownian motion model. For the analysis, we use the exact expressions for the
decay times of unstable states, which take into account the inverse probability current in contrast to the
well-known mean first passage time method. These expressions are valid for any intensity of fluctuations and
for arbitrary potential profiles. The effect of delay is shown to arise under the decay of unstable nonequilibrium
states due to the action of two different mechanisms. These mechanisms are caused by the inverse probability
current and by the nonlinearity of potential describing an unstable state.@S1063-651X~99!10111-9#

PACS number~s!: 02.50.2r, 05.40.2a
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I. INTRODUCTION AND FORMULATION
OF THE PROBLEM

The decay of unstable states is related to fundame
phenomena of statistical physics. The characteristic fea
of this problem is the crucial role of fluctuations. Some u
stable states, namely, unstable equilibrium states or marg
states, can decay only due to the action of fluctuations. T
is the main reason for intensive investigation of this probl
by many authors@1–22#. In the present paper, our main co
cern is with the kinetics of the decay. It was assumed~see,
e.g., Ref.@11#! that the basic features of the decay of u
stable nonequilibrium states can be obtained from ma
scopic laws. It means that one can find a deterministic
jectory of the system evolution from the unstable state t
stable one, and, then, the fluctuations are assumed to b
insignificant correction to this macroscopic path~i.e., the
fluctuations constitute only a minor perturbation!. In addi-
tion, it was assumed that the fluctuations can only accele
the escape from the unstable state@14#. However, in Refs.
@16,23–34# it was found that there are systems that may d
out of these rules. In particular, in the systems considere
Refs. @16,23–30# the fluctuations can considerably increa
the decay time of unstable and metastable states. Thes
the effects of noise delayed decay~NDD! of unstable states
and noise enhanced stability~NES! of metastable states, de
pending on the parameters of the system considered.
NES effect was obtained in Refs.@23–27# for periodically
modulated metastable nonlinear systems. The modula
was so intense@26,27# that the system was unstable in a sh
interval of time of the period of the driving force and met
stable in the remaining time interval. In accordance w
Refs.@26# and@27#, the NES effect implies that the stabilit
of metastable state can be increased by the fluctuation
Refs.@16,28–30# and in the present paper, the unstable sta
without periodical driving are investigated. The NDD effe
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shows that fluctuations can delay the decay of purely
stable states. The effect of NDD is very similar to that
NES but the name NDD must be used when the state
unstable, because one cannot consider the ‘‘stability’’ of
unstable state.

Note, that the effect of partial or even full stabilization
unstable states by noise was known before. In Refs.@35# and
@36#, it was shown that in this case the fluctuations must
parametric~multiplicative!, but in Refs.@16,23–30# and in
the present paper, only additive fluctuations are conside
It turns out that the additive fluctuations can delay the de
of unstable states too. These results are in a contradic
with some usual notions on the decay of unstable states
der the action of additive fluctuations. Therefore, these c
cepts must be corrected and supplemented, which is the m
aim of this paper.

One may see that the NDD and NES are similar to
phenomena of stochastic resonance, since in all these c
one obtains a system response which has the resonant d
dence on the noise intensity. However, the difference is
the nature of response considered: In the case of NDD
NES the response is the decay time of unstable and m
stable states, while in the case of stochastic resonance
the signal to noise ratio.

The commonly accepted and simplest model of the de
of unstable states is the model of one-dimensional ov
damped Brownian motion in the potential field of force@1,9#:

dx

dt
52

dF~x!

hdx
1j~ t !. ~1!

Here,x is the representative phase point denoting the stat
the system,F(x) is the potential describing the system itse
j(t) is the white Gaussian noise,^j(t)&50, ^j(t)j(t1t)&
52qd(t)/h, 2q/h is the intensity of fluctuations,h is the
coefficient of equivalent viscosity, andq is the energy tem-
perature of fluctuations. In the case of thermal fluctuatio
q5kT.

Let the potential be as follows:

F~x!52ax2/2. ~2!
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6334 PRE 60N. V. AGUDOV AND A. N. MALAKHOV
One usually considers this potential profile when analyz
the decay of unstable states@4–11#. In this case, the unstabl
equilibrium state is located at the top of the parabolax
50), and the unstable nonequilibrium states are at the po
xÞ0. In the initial instant, let the phase point be located
the locally horizontal part of the parabolic potential profi
x050. Due to the action of fluctuations, the point begins
move randomly. When the point is shifted by fluctuatio
from the top of the parabola, it is subjected to the action
the regular force and goes away from the unstable state d
the parabola. It is the so-called effect of enhancemen
fluctuations.

Thus, in the case of a small intensity of fluctuations,
decay process can be separated into two stages~see, e.g.,
Ref. @4#!: the first stage is the movement under the action
the random force near the top, and the second stage is
drift under the action of the regular force on the slope of
parabola. In the first stage~unstable region!, the influence of
the regular force is insignificant. In the second stage~exten-
sive region!, one can neglect the random force. This conc
is used in Refs.@4–9# to obtain the approximate expressio
~valid underq→0) for the decay time of the unstable equ
librium states ~the scaling method!. According to this
method, if, initially, the representative point was located
the slope of the parabola (x0Þ0), then its further motion is
defined mainly by the regular force, and the action of flu
tuations is insignificant. At the same time, it is shown in R
@30# that it is just the case (x0Þ0), when the fluctuations ca
delay the decay of the unstable state. It means that the in
ence of fluctuations on the system in the extensive regio
significant, and there are cases when one can not ignor
Consequently, the scaling methods are not valid in each c
Therefore, their application range must be refined.

On the other hand, the results obtained in Refs.@5–7,30#
are also approximate because they are restricted by the m
first passage time method~MFPTM!, which requires the use
of the absorbing boundaries. Let us explain this situation
an example. Consider a dynamic system described by
arbitrary potential profile similar to that depicted in Fig.
The unstable state of the system is nearx50. Let the decay
time of the unstable state be the escape time from the g
decision intervalR: @2L;L#, x0PR. When one uses the

FIG. 1. Two potential profiles describing the same unstale st
potential profile with two absorbing boundaries used in MFPT
~thick curve! and the real potential profile~thin curve!.
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MFPTM, the absorbing boundaries must be located in
ends of the decision intervalx56L, i.e., the real potentia
profile is replaced by another one~see the thick curve in Fig
1!.

The potential profile describing the unstable state m
have a different shape, similar to that depicted, for exam
in Fig. 2. In this case, to analyze the decay time, one usu
considers the following decision intervalR: @2`;L#. Evi-
dently, in this case the MFPTM~the setup of the absorbin
boundary! distorts the real potential profile too.

Therefore the following question arises: How will the e
fect of the NDD be changed, if the absorbing boundaries
absent? In this case the representative points can return
the decision interval after they have left it. In other words,
inverse probability current appears. Thus, to answer
question, we need to take into account this inwardly direc
inverse probability current, which is neglected by t
MFPTM.

To do this we use the new method proposed in Ref.@37#.
This method allows one to obtain the exact expressi
~which are valid for any intensity of fluctuations and for a
arbitrary potential profile! for decay times of unstable state
with the inverse probability current taken into account. In t
present paper the analysis and comparison of the exact d
times with the approximate ones proposed by other auth
are presented. Various unstable states described by pol
mial potential profiles are considered.

The decay time of an unstable state is defined as follo
Let us consider the probabilityP(t) for the representative
phase point to fall within the given decision intervalR ~see
Figs. 1 and 2!. Initially the point always falls within the
interval R and we have:P(0)51. With time, the survival
probability P(t) decreases to some equilibrium valueP(`)
5Peq . The valuePeq depends on the type of the potenti
profile. One can distinguish two types of the potential p
files:

1. The potential profileF(x)→1` with x→6` ~See
Fig. 3!. In this case, att→`, the following equilibrium Bolt-
zmann distribution is established in the system:

Weq~x!5N expS 2
F~x!

q D ,

e:

FIG. 2. Potential profile with one absorbing boundary used
MFPTM ~thick curve! and the real potential profile~thin curve!.
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whereN is the normalization factor. Therefore, the equili
rium valuePeq in the decision interval is

Peq5NE
R
Weq~x!dx.

2. The potential profileF(x)→2` with x→`, or with
x→2`, or with x→6` ~See Figs. 1,2!. In this case,
Weq(x)50 and, consequently,Peq50.

Thus, under any type of potential profiles, the surviv
probability decreases fromP(0)51 to P(`)5Peq , where
0<Peq,1. We define the decay timet of unstable states a
the relaxation time of the survival probability to the equili
rium value:

t5
1

12Peq
E

0

`

„P~ t !2Peq…dt. ~3!

If the absorbing boundaries are given at the ends of the
cision intervalR, then the decay time~3! coincides with that
obtained by the MFPTM~See Ref.@37#!. In all other cases
the expression~3! takes into account the inverse probabili
current across the boundaries of the decision interval
therefore it differs from the MFPT. Thus, the MFPT is
particular case of the decay time of unstable state~3!,
namely, the case in which we neglect the inverse probab
current.

The idea to take into account the inverse probability c
rent is not new and the various definitions of decay and
laxation times can be used, as it is discussed, for exampl
Refs. @14# and @38#. In particular, the decay~or relaxation!
time ~3! first proposed in Ref.@38# is similar to that consid-
ered in Refs.@14,43, and 44#, however, it is not exactly the
same. Nevertheless, following Refs.@14,43, and 44# further,
we call the time~3! the nonlinear relaxation time~NLRT!, in
order to differ it from the MFPT which does not take in
account the inverse current.~The word ‘‘nonlinear’’ refers to
the fact that this is not a case which involves small fluct
tions around equilibrium, where linear response the
would be valid.!

As is mentioned in Ref.@37#, the definition~3! is legiti-
mate if the variation of survival probability is sufficientl

FIG. 3. A sketch of the potential profile of type 1.
l
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fast so that the integral converges, and ifP(t), during its
time behavior, does not intersect the final valuePeq . In gen-
eral, the functionP(t) does not need to be monotonic; how
ever, for the fulfillment of the last condition, the monoton
variationP(t) is sufficient. The intersection can appear on
if Peq.0, i.e., for the potential profiles of the first type. Th
potential of this type is considered in Sec. III, where t
problem of intersection and monotony is discussed.

II. LINEAR SYSTEMS

In order to understand better how the effect of NDD a
pears, we consider below two linear systems. Let the po
tial profile in Eq.~1! be a straight line with a given slope@the
regular drift forcef (x)52F8(x) is a constant for the entire
range ofx]:

F~x!52kx ~4!

with unstable state atx(0)5x0,L ~see Fig. 4!. We take the
following decision intervalR:@2`;L#. It follows from Eq.
~1! that in the absence of noise„j(t)50… the decay time is
equal to

t~x0 ,q50!5h~L2x0!/k5T0~x0!. ~5!

In the presence of fluctuations, this time becomes a rand
value. Let us consider the decay time of the unstable st
first, as the MFPT of the boundaryL. In accordance with
Refs.@39–41#, the MFPT is equal to

T~x0 ,q!5
h

qEx0

L

eF(v)/qE
2`

v
e2F(u)/qdudv. ~6!

Using Eq.~6!, we obtain

T~x0 ,q!5h~L2x0!/k5T0~x0!. ~7!

Thus, forF(x)52kx, the MFPT coincides with the escap
time without noise. Fluctuations, on the average, do not
fect the decay time of the unstable state. As is shown in R
@30#, in order to obtain the dependence of the MFPT
fluctuations, it is necessary to take a nonlinear potential p

FIG. 4. Linear potential profile~4!.
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6336 PRE 60N. V. AGUDOV AND A. N. MALAKHOV
file. In that case, the fluctuations can delay or speed up
decay of the unstable state depending on the kind of non
earity.

Let us take into account that the phase point can cross
point x5L any number of times and in any direction~i.e., we
take into account the inverse probability current!. To do this,
we must remove the absorbing boundary from the end of
decision intervalx5L. Then, one can obtain the NLRT i
several ways: Solving the Fokker-Planck equation for
probability densityW(x,t) ~see, e.g., Ref.@1#!, or for its
Laplace transform@38#, or using the above-mentioned exa
expression in the quadratures obtained in Ref.@37#:

t~x0 ,q!5T~x0 ,q!1
h

qEL

`

eF(v)/qdvE
2`

L

e2F(u)/qdu,

~8!

where T(x0 ,q) is the MFPT ~6!. Evidently, any of these
ways leads to the following result:

t~x0 ,q!5T0~x0!S 11
q

kLD>T0~x0!. ~9!

It follows from Eq. ~9!, that if we take into account the
inverse probability current, the fluctuations will always del
the decay of the unstable state: the greater the fluctuati
the greater the NLRT, i.e., the effect of the NDD takes pla

Note, that for the considered potential the NDD appe
for the NLRT, while it does not appear for the MFPT.
means that the first mechanism of NDD appearance, wh
was considered in Ref.@30# ~where only the MFPTM were
used!, does not function here. In this case, the effect of
NDD appears because of the second mechanism: The inv
probability current, which is not taken into account by t
MFPTM. Thus, in the general case, the NDD can appear
to the action of at least two mechanisms: First, caused by
nonlinearity of the potential profile and, second, caused
the inverse probability current. This example also shows
the MFPTM sometimes cannot reflect the real situation.

It was mentioned in Ref.@14# that one can neglect th
inverse probability current, if decay times are less than
typical time required to reach the boundary of the decis
interval from the absolute minimum of the potential. It fo
lows from the above example that it is not true. Indeed,
this example the absolute minimum of the potential is in
nitely far from x0 at x→` and the return time of the phas
point from the minimum is infinitely long, i.e., the deca
time is always less. Nevertheless, we see that the inv
probability current caused by the fluctuations is so great
the effect of NDD appears. Further we show that the sa
situation takes place for many other linear and nonlinear s
tems described by various potential profiles. This is beca
the value of the inverse current is defined not only by
neighborhood of the absolute minimum but also by the sh
of the entire part of the potential profile, which is beyond t
decision interval. It is the inverse current that provides
delay of the unstable state decay regardless of the locatio
the potential minimum.

Let us return now to the classical view of the linear u
stable system described by the parabolic potential profile~2!
~Fig. 5!. First we consider the casex050 ~unstable equilib-
e
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rium state!. As was mentioned above, this case was stud
by many authors@1–9#. In particular, in Ref.@5# the MFPTM
was used and the absorbing boundaries were arrangedx
56L. For the symmetric potential profileF(2x)5F(x),
the MFPT is equal to@2,39#

T~x0 ,q!5
h

qEx0

L

eF(v)/qE
0

v
e2F(u)/qdudv. ~10!

In Ref. @5#, using scaling methods, the asymptotical expr
sion for the MFPT~10! was obtained forq→0, when ini-
tially the representative point is exactly in the unstable eq
librium statex050:

tas5TsF ln
1

s
2cS 1

2D G , ~11!

where Ts5h/2a is the characteristic time of the system
F05aL2/2 is the value of potential at the pointx5L ~See
Fig. 5!, s5q/F0 is the dimentionless temperature of flu
tuations, andc(x) is the digamma function. In Ref.@5# it
was assumed that forq→0 the MFPT must coincide with the
NLRT, because under the small fluctuations the inve
probability current becomes negligible.

Now we can compare these results with the exact exp
sion for the nonlinear relaxation time. From the results p
sented in Ref.@37#, one obtains the NLRT for the symmetri
potential of the second type~see Sec. I! as follows:

t~x0 ,q!5T~x0 ,q!1
h

qEL

`

eF(v)/qdvE
0

L

e2F(u)/qdu,

~12!

whereT(x0 ,q) is the MFPT~10!. The plotst(0,q), T(0,q),
andtas(q) calculated in accordance with Eqs.~12!, ~10!, and
~11! for the potential~2! are depicted in Fig. 6. One ca
easily see that these time scales coincide forq→0. This
confirms the assumptions used in Ref.@5#. As in the previous
example, the NLRT becomes greater than the MFPT with
fluctuations. The expression for the NLRT~12! differs from
that for the MFPT by the second term, which tends to zero
q→0 and rises withq for potential ~2!. Thus, the inverse
probability current always enhances the NLRT compa
with the MFPT for q.0. Let us note that the asymptoti
expression~11! gives a rather good approximation fors

FIG. 5. Parabolic potential profile~2!.
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FIG. 6. Dimensionless NLRT, MFPT, and
asymptotical decay time, versus the dimensio
less temperature for the unstable equilibrium st
described by parabolic potential~2! at x050 ~see
Fig. 5!.
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,0.5. On the other hand, it can be shown that fors.3 the
NLRT given by Eq.~12! is represented as

t~0,q!5TsSA2ps21/22s211
1

6
A2ps23/21••• D .

~13!

Let us assume that the initial states are shifted from
top: x0Þ0 ~unstable nonequilibrium state!. The expressions
for the MFPT~10! and for the NLRT~12! remain the same
The asymptotical expression~11! does not function in this
case. The dependencies of the NLRT on the fluctuation t
perature q for x0 /L50.8 ~solid curve! and the MFPT
~dashed curve! are presented in Fig. 7. First, one can s
from Fig. 7 that in the casex0Þ0 the effect of the NDD
appears for both time scales. Second, the inverse probab
current enhances the NLRT compared with the MFPT, as
the casex050. For the MFPT, the maximal magnificatio
by noise is about 25% above its value without noise, wh
for the NLRT the magnification is greater than 250%. No
e

-

e

ity
r

e
,

that the dependence of the MFPT on the fluctuation inten
was studied earlier in Ref.@30#.

As we already noted, the above Eq.~12! differs from Eq.
~10! by the second term. This term is independent ofx0. It
means that the conclusion made in Ref.@30# relative to the
dependence of the MFPT onx0 is also true for the NLRT:
The maximum value of the function Q(q)
5t(x0 ,q)/t(x0,0) increases asx0 approachesL.

Thus, if the representative phase point of the dynam
system is in the unstable nonequilibrium state, the effec
the NDD can be so significant that the NLRT can be ma
times greater than in a purely dynamic case without fluct
tions. The expression for the decay time obtained by
scaling methods~11! is valid only for the unstable equilib
rium state (x050).

III. SATURATION EFFECT. NONLINEAR SYSTEMS

Now we generalize the potential~2! including the satura-
tion term ~Fig. 8!:
-
n-

ra-
FIG. 7. Dimensionless NLRT and MFPT ver
sus the dimensionless temperature for the u
stable nonequilibrium state described by the pa
bolic potential~2! at x050.8L ~see Fig. 5!.
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F~x!52
1

2
ax21

1

4
bx4. ~14!

The unstable equilibrium state is still at the pointx50. The
global equilibrium states of the system now are at poi
xm56Aa/b„F(xm)52a2/4b… but not atx→6` as it was
previously for linear systems. Therefore, the nonequilibri
unstable states are everywhere except these three po
From the general expression presented in Ref.@37#, it is ob-
vious that in the case of the symmetrical potential„F(2x)
5F(x)…, the exact expression for the NLRT defined by E
~3! is as follows:

t~x0 ,q!5T~x0 ,q!2
h

q

C2~q!

C1~q!
, ~15!

where

C2~q!5E
0

L

eF(v)/qf 2~v !dv

2
Peq

12Peq
E

L

`

eF(v)/q~12 f ~v !!2dv,

C1
215E

0

`

e2F(v)/qdv, f ~x!5C1E
0

x

e2F(v)/qdv,

Peq5 f ~L !,

where 6L are the boundaries of the decision intervalR:
@2L;L#, x0PR, andT(x0 ,q) is the MFPT~10!, which, as
in the linear case, represents the decay time approximate
q→0. In addition, in Ref.@5# for q→0 andx050, the fol-
lowing asymptotical expression for the MFPT was obtain

tas5TsS ln
2M2Fm

~12M2!q
2cS 1

2D D , ~16!

where M5L/xm , Fm52F(xm) is the depth of potentia
wells. The plotst(0,q), T(0,q), andtas(q) are presented in
Fig. 9. As expected, all these three times coincide foq
!F(xm). For q.F(xm), the asymptotic formulas~16! is not
correct. As it follows from Fig. 9, the NLRT is always mor

FIG. 8. Potential profile~14! describing the unstable syste
with saturation.
s

ts.

.

at

:

than the MFPT, since it takes into account the inverse pr
ability current, which retards the escape of representa
points from the decision interval.

Now let us consider the casex0Þ0. The plotst(x0 ,q)
andT(x0 ,q) for x050.8L andM50.5 are presented in Fig
10. As in the linear case, ifx0Þ0, the NDD effect appears
Comparing the plots in Fig. 10 and Fig. 7, one can conclu
that the influence of the saturation term in Eq.~14! on the
NDD phenomena is insignificant under smallq. At large q,
the NLRT for the system with saturation becomes less t
the NLRT for the system without saturation. It can be e
plained as follows: The survival probability for the syste
with saturation varies with time fromP(0)51 to P(`)
5Peq.0, but not from 1 to 0, as it was for the syste
without saturation~2!. Therefore, under the fluctuation tem
perature of the order of the depth of potential wells a
greater„q>F(xm)…, the equilibrium@defined by the evolu-
tion of P(t)] is attained earlier for the system with satur
tion, since in this casePeq is sufficiently large. That is why
the NLRT for the system with saturation is smaller. On t
other hand, it is nesessary to take into account that the NL
defined by Eq.~3! can give rise to a wrong result if th
function P(t) is nonmonotonic and intersects the valuePeq .
In this case, the real NLRT can be only greater than t
defined by Eq.~3! and obtained from Eq.~15!. Consequently,
the real NDD effect can be greater. We do not know t
function P(t), because our method allows us to derive on
the integral of it. Therefore, the monotony condition for th
case must be verified separately elsewhere.

Let us now refer to another case of potentials~Fig. 11!:

F~x!52kx2
b

2n11
x2n11, n51,2,3, . . . . ~17!

All the states of that system are nonequilibrium ifk>0, b
.0. The global equilibrium state is only atx→`. In Ref.
@7#, the exact and approximate expressions for the MF
were investigated fork50 when x0<0. As in the above
cases, the NLRT and the MFPT for potential~17! coincide
for q→0 if the initial state of the system is that of unstab
equilibrium ~i.e., if x050 andk50). The asymptotical ex-
pressions are known@7#. Recently, in Ref.@30# it was shown
that the NDD appears for these potentials as well. In acc
dance with Ref.@30#, it takes place ifk50 and 0,x0,L or
if k.0 and2L,x0,L. However, in Ref.@30# the decay
time was obtained by the MFPTM, i.e., by an approxima
method, which does not take into account the inverse pr
ability current.

Now we can obtain the exact NLRT, using the abov
mentioned results~8! of Ref. @37#. Let x0>0 and the deci-
sion interval beR: @2`;L#. In the absence of fluctuations
the ‘‘dynamic’’ decay time is equal to

t05E
x0

L hdx

F8~x!
, ~18!

whereF(x)52F(x).
To analyze the influence of fluctuations on the nonline

relaxation time, let us expand the NLRT~8! into a power
series inq. To fulfill this program, we need to find an as
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FIG. 9. Dimensionless NLRT, MFPT, and
asymptotical decay time versus the dimensionle
temperature for the unstable equilibrium state d
scribed by potential~14! at x050 ~see Fig. 8!.
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ymptotical expansion of the typical integrals involved in t
general formula~8!. Let us present the typical indefinite in
tegral as follows:

Eu

eF(v)/qdv5eF(u)/qK~u,q!, ~19!

whereF(v).0, F8(0)Þ0, the small parameterq has any
sign, andK(u,q) is the unknown function, which is to b
found for smallq. Differentiating Eq.~19! with respect tou,
one can easily find that

Ku8~u,q!512
K~u,q!

qz~u!
, ~20!

wherez(u)51/F8(u). We assume that for smallq, the right-
hand side of Eq.~20! is also small. Then, using Eq.~20! as
an iterative equation, as the first approximation, we obta

K~u,q!5qz~u!.

One can easily find the second approximation, substitu
this value into the left-hand side of Eq.~20!:
g

K~u,q!5qz2q2zz8,

etc. It is evident that in the obtained equations the derivati
of all approximations tend to zero atq→0. It confirms the
initial assumption.

As a result, we find the following expansion of the soug
function K(u,q) into the power series inq:

K~u,q!5qz$12qz81q2~zz8!82q3
„z~zz8!8…8

1q4@z„z~zz8!8…8#81•••%. ~21!

By doing so, forA,B>0 and for smallq we have

E
A

B

eF(v)/qdv5eF(B)/qK~B,q!2eF(A)/qK~A,q!. ~22!

The expressions obtained are valid ifz(u)51/F8(u) and
all derivatives ofz(u) do not tend to infinity, i.e., if the
derivative F8(u) does not tend to zero in the integratio
interval. For the considered potential~17!, this refers to the
conditionk.0.
un-
o-
FIG. 10. Dimensionless NLRT and MFPT
versus the dimensionless temperature for the
stable nonequilibrium state described by the p
tential ~14! at x050.8L ~see Fig. 8!.
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Doing so, one can easily show that„F(v).0,L>0… for
small q.0,

E
L

`

e2F(v)/qdv52e2F(L)/qK~L,2q!, ~23!

where

K~L,2q!52qzL@11qzL81q2~zLzL8 !81q3
„zL~zLzL8 !8…8

1•••#, ~24!

andzL5z(L)51/F8(L), zL85@(d/du)z(u)#u5L , etc.
Substituting the obtained Eqs.~22! and ~23! into Eq. ~8!,

we find that for smallq andx0.0,

E
x0

L

ew(v)dvE
2`

v
e2w(u)du5E

x0

L

K~v,q!dv,

E
L

`

ew(v)dvE
2`

L

e2w(u)du52K~L,2q!K~L,q!.

Thus, forx0.0

t5
h

qEx0

L

K~v,q!dv2
h

q
K~L,2q!K~L,q!. ~25!

Expanding functionK in accordance with Eqs.~21! and
~24!, and performing the partial differentiation, we find th
following expansion of the NLRT into the power series inq
for 0,x0,L:

t~x0 ,q!5hE
x0

L

z~u!du1 1
2 hq@A1~x0!1A1~L !#

1hq2E
x0

L

z~zz8!8du1 1
2 hq3@A3~x0!1A3~L !#

1hq4E
x0

L

z@z„z~zz8!8…8#8du1 1
2 hq5@A5~x0!

1A5~L !#1•••, ~26!

where

FIG. 11. Potential profile~30! describing the unstable state co
sidered in Ref.@14#.
A1~u!5z2,A3~u!5z2@2~z8!212~zz8!8#,

A5~u!5z2$2@z„z~zz8!8…8#822z8„z~zz8!8…81„~zz8!8…2%,

~27!

z5z~u!51/F8~u!.

One can easily see that the first term coincides with
‘‘dynamic’’ decay time~18! as it must be. The second term
is proportional toq and is always positive. This indicates
rise of the NLRTt(q) with q from the pointt5t0 ~for q
50). Thus, if the first derivative of the potentialF8(u) is
negative and is not zero, the fluctuations acting in dynam
systemsalways increasethe decay time of the unstable sta
under small intensities. The linear system~4! considered
above corresponds to the particular case of expression~26!.
Indeed, substituting Eq.~4! into Eqs.~26! and ~27!, we ob-
tain the series with two terms, Eq.~9!. For the nonlinear
potential profiles the series~26! is infinite.

If x050, the expansion of the NLRT into the power s
ries in q is as follows:

t5hE
0

L

z~u!du1 1
2 hq@A1~L !1A1~0!#

1hq2F E
0

L

z~zz8!8du1B2~0!G1 1
2 hq3@A3~L !2A3~0!

12B3~0!#1hq4F E
0

L

z@z„z~zz8!8…8#8du1B4~0!G1••• .

~28!

Here, the functionsAk(u) are defined by Eq.~27!, and the
functionsBk(u), are equal to

B2~u!52z2z8, B3~u!5z2@2~zz8!81~z8!2#,

B4~u!5z2@2„z~zz8!8…812z8~zz8!8#, ~29!

z51/F8~u!.

Thus, whenx050, the second term in Eq.~28! is the same as
in the casex0.0, i.e., it is positive and the NLRT increase
for small q.

The series for the NLRT inq for some different and more
general cases of potentialF(x) is obtained in Ref.@42#.

The decay times of unstable equilibrium and unsta
nonequilibrium states described by potential~17! for n51,

F~x!52kx2
1

3
bx3, ~30!

were considered in Ref.@14# in detail, and the NDD effect
was not revealed. Therefore, we consider this case again
show that the decay time of the unstable state can incre
with noise. Letk.0 andb.0. As is mentioned in Ref.@14#,
this case corresponds to the majority of experimental resu
It follows from the general expression~28! that for x050
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FIG. 12. Dimensionless NLRT and MFPT
versus the dimensionless temperature for the
stable nonequilibrium state, described by the p
tential ~30! at x050, k.0, andm51 ~see Fig.
11!.
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Aab
@arctanm1sE1~m!2s2E2~m!10~s3!#,

~31!

where

E1~m!5111/~11m2!2,

E2~m!5
5

32
arctanm1

5

32

m

11m2 1
5

48

m

~11m2!2

1
1

12

m

~11m2!3 1
3

2

m

~11m2!4

m5A3L/L0 , s52A3q/F~L0!, L05A3k/b.

The quantityL0 characterizes the relative influence of t
linear and nonlinear terms in the expression for poten
profile ~30!. At the pointx5L0, these terms are equal. Th
plots of the NLRT~8!, the MFPT~6!, and the approximate
expression~31! are presented in Fig. 12 versus the fluctu
tion temperatureq. Thus, one can see that the NDD appe
in this case as well and it is the main correction to the ana
sis carried out in Ref.@14# where the authors contend th
reverse, namely, that fork.0 the fluctuations will accelerat
the decay process.

The asymptotical formula~31! at m!1 ~in this caseE2
'2m) allows us to estimate the temperatureqmax for which
the NLRT is maximal:

qmax'
1

24

L0

L
F~L0!.

The expression~31! itself at q;qmax gives a greater value
than the exact Eq.~8!. Evidently, it is because we have take
into account only the three first terms of the infinite ser
~26!. Estimation of the decay time by th
MFPTM leads, as in the above examples, to a reduced q
tity, because it does not take into account the inverse p
ability current.
l

-
s
-

s

n-
b-

The analysis of expressions~6! and ~8! shows that the
difference between the MFPT and the NLRT increases w
a decrease in parameterm. The dimensionless parameterm
characterizes the relative value of the nonlinear term co
pared with the linear one inside the decision interval forx
.0. The decrease inm means that the potential profile be
comes closer to the linear one within the decision interval
the purely linear case (m50), the difference between th
MFPT and the NLRT is maximal: the NLRT coincides wit
Eq. ~9! and increases linearly withq, while the the MFPT is
a constant value equal tohL/k. As m→`, the NLRT be-
comes closer to the MFPT. The NDD also appears in t
case, however, it is smaller than form→0. Finally, for m
5` (k50), when the considered unstable nonequilibriu
state becomes equilibrium~the decay time without noise i
infinite!, the NDD disappears. As was mentioned above, i
this case which is well studied in the literature~see, e.g., Ref.
@7#!. However, if for k50 we takex0.0, then the NDD
appears again and increases as the distance fromx0 to the
boundaryL of the decision interval decreases.

The above dependence of the NDD on the parameterm is
explained by the fact that the noise delayed decay app
due to the action of two different mechanisms. The fi
mechanism~which was studied in detail in Ref.@30#! is
caused by the nonlinearity of the potential profile. The s
ond one is caused by the inverse probability current acr
the boundaryL. The first mechanism leads to the increase
both MFPT and NLRT~8! ~where the MFPT is involved as
term!. The action of the second mechanism cannot be
counted for by the MFPTM. Atm→0, the NLRT and MFPT
differ greatly and the NDD appears only for the NLRT.
means that asm→0, the NDD appears only due to the actio
of the second mechanism. Indeed, form50, the potential
profile becomes linear and in this case the first mechan
does not act~see Sec. II!. With increasingm, the difference
between the NLRT and MFPT disappears. It means that
first mechanism of the NDD comes into effect, while th
action of the second one becomes weaker.

IV. CONCLUSION

The above analysis shows that the effect of NDD is ty
cal of all kinds of the considered nonequilibrium unstab
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states. In other words, the NDD phenomenon exists fo
wide range of parameters and initial conditions of the no
linear systems. The asymptotical expressions such as
~11! and ~31! obtained earlier in Refs.@4,5,7, and 14# are
valid only for the specific values of the parameters and ini
conditions for which the unstable state becomes equilibriu
The shift from the unstable equilibrium state to the unsta
nonequilibrium state by changing the system parameter
initial conditions, leads to the appearance of NDD.

The NDD phenomenon appears due to the action of t
different mechanisms. One of them is caused by the non
earity of the potential profile describing the unstable st
within the decision interval. This mechanism is responsi
for the resonant dependence of MFPT on fluctuation te
perature. It was considered in Ref.@30#. The other mecha-
nism is caused by the inverse probability current direc
n

e

a
-
qs.

l
.

e
or

o
n-
e
e
-

d

into the decision interval. The latter one can not be
counted by the MFPT method. That is why the estimation
the decay times by the MFPT method gives a reduced va
Both these mechanisms are activated by fluctuations. Th
fore, one can not contend that in the process of decay
unstable nonequilibrium states the action of fluctuations
insignificant: The effect of the NDD shows that we can bo
accelerate or slow down the decay of unstable nonequ
rium states when varying the intensity of fluctuations.
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